找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 224|回复: 1

FFT结果的物理意义

[复制链接]
发表于 2016-12-28 16:47:53 | 显示全部楼层 |阅读模式

加入社区,轻松玩转无人机!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
本帖最后由 cjxu 于 2016-12-28 16:51 编辑

FFT结果的物理意义
    FFT
是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这 就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
   
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT
   
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
   
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N2的整数次方。
   
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的 幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是AN/2倍。 而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点 N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被 N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为: 。由上面的公式可以看出,Fn所能分辨到频率为 Fs/N,如果采样频率Fs1024Hz,采样点数为1024点,则可以分辨到1Hz1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是 ,相位就是 。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为: ,即 。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
   
好了,说了半天,看着公式也晕,下面以一个实际的信号来做说明。
   
假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)
   
式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz50Hz75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。
11.gif



                     
1 FFT结果
   
从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1
点: 512+0i
2
点: -2.6195E-14 - 1.4162E-13i
3
点: -2.8586E-14 - 1.1898E-13i
50
点:-6.2076E-13 - 2.1713E-12i
51
点:332.55 - 192i
52
点:-1.6707E-12 - 1.5241E-12i
75
点:-2.2199E-13 -1.0076E-12i
76
点:3.4315E-12 + 192i
77
点:-3.0263E-14 +7.5609E-13i
   
   
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1
点: 512
51
点:384
76
点:192
   
按照公式,可以计算出直流分量为:512/N=512/256=250Hz信号的幅度为:384/(N/2)=384/(256/2)=375Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
   
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点nn1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pipi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。
[
附录:本测试数据使用的matlab程序]
close all; %
先关闭所有图片
Adc=2;  %
直流分量幅度
A1=3;   %
频率F1信号的幅度
A2=1.5; %
频率F2信号的幅度
F1=50;  %
信号1频率(Hz)
F2=75;  %
信号2频率(Hz)
Fs=256; %
采样频率(Hz)
P1=-30; %
信号1相位()
P2=90;  %
信号相位()
N=256;  %
采样点数
t=[0:1/Fs:N/Fs]; %
采样时刻
%
信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%
显示原始信号
plot(S);
title('
原始信号');
figure;
Y = fft(S,N); %
FFT变换
Ayy = (abs(Y)); %
取模
plot(Ayy(1:N)); %
显示原始的FFT模值结果
title('FFT
模值');
figure;
Ayy=Ayy/(N/2);   %
换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %
换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %
显示换算后的FFT模值结果
title('
幅度-频率曲线图');
figure;
Pyy=[1:N/2];
for i="1:N/2"
Pyy(i)=phase(Y(i)); %
计算相位
Pyy(i)=Pyy(i)*180/pi; %
换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %
显示相位图
title('
相位-频率曲线图');
请使用手机"扫一扫"x
回复

使用道具 举报

 楼主| 发表于 2016-12-28 16:48:41 | 显示全部楼层
本帖最后由 cjxu 于 2016-12-28 16:52 编辑

刚才发错了 重新换一个
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表